124 research outputs found

    The enumeration of planar graphs via Wick's theorem

    Get PDF
    A seminal technique of theoretical physics called Wick's theorem interprets the Gaussian matrix integral of the products of the trace of powers of Hermitian matrices as the number of labelled maps with a given degree sequence, sorted by their Euler characteristics. This leads to the map enumeration results analogous to those obtained by combinatorial methods. In this paper we show that the enumeration of the graphs embeddable on a given 2-dimensional surface (a main research topic of contemporary enumerative combinatorics) can also be formulated as the Gaussian matrix integral of an ice-type partition function. Some of the most puzzling conjectures of discrete mathematics are related to the notion of the cycle double cover. We express the number of the graphs with a fixed directed cycle double cover as the Gaussian matrix integral of an Ihara-Selberg-type function.Comment: 23 pages, 2 figure

    Discrete Dirac Operators, Critical Embeddings and Ihara-Selberg Functions

    Full text link
    The aim of the paper is to formulate a discrete analogue of the claim made by Alvarez-Gaume et al., realizing the partition function of the free fermion on a closed Riemann surface of genus g as a linear combination of 2^{2g} Pfaffians of Dirac operators. Let G=(V,E) be a finite graph embedded in a closed Riemann surface X of genus g, x_e the collection of independent variables associated with each edge e of G (collected in one vector variable x) and S the set of all 2^{2g} Spin-structures on X. We introduce 2^{2g} rotations rot_s and (2|E| times 2|E|) matrices D(s)(x), s in S, of the transitions between the oriented edges of G determined by rotations rot_s. We show that the generating function for the even subsets of edges of G, i.e., the Ising partition function, is a linear combination of the square roots of 2^{2g} Ihara-Selberg functions I(D(s)(x)) also called Feynman functions. By a result of Foata--Zeilberger holds I(D(s)(x))= det(I-D'(s)(x)), where D'(s)(x) is obtained from D(s)(x) by replacing some entries by 0. Thus each Feynman function is computable in polynomial time. We suggest that in the case of critical embedding of a bipartite graph G, the Feynman functions provide suitable discrete analogues for the Pfaffians of discrete Dirac operators

    On the optimality of the Arf invariant formula for graph polynomials

    Get PDF
    We prove optimality of the Arf invariant formula for the generating function of even subgraphs, or, equivalently, the Ising partition function, of a graph.Comment: Advances in Mathematics, 201
    • …
    corecore